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Abstract 

Avian coccidiosis, caused by protozoan parasites of the genus Eimeria, remains one of 

the most economically important diseases in poultry, particularly chickens, with 

profound impacts on global food security. The disease leads to reduced growth 

performance, poor feed conversion, increased mortality, and substantial treatment costs. 

While clinical outbreaks are easily identified, subclinical infections—responsible for 

nearly 70% of the total economic losses—often remain undetected, causing chronic 

productivity decline. This review provides an integrated perspective on the 

epidemiology, economic burden, host–parasite interactions, diagnostic advances, and 

control measures against avian coccidiosis. Seven classical Eimeria species (E. tenella, 

E. acervulina, E. maxima, E. necatrix, E. brunetti, E. mitis, and E. praecox) along with 

three cryptic Operational Taxonomic Units (OTUs) exhibit species-specific 

pathogenicity and intestinal tropism. Globally, the disease has a pooled prevalence of 

~44%, with higher incidence in warm and humid regions, and causes annual losses 

exceeding £10 billion. Although anticoccidial drugs remain the cornerstone of control, 

resistance is widespread, highlighting the urgent need for sustainable alternatives. 

Promising strategies include phytogenic compounds, probiotics, and a new generation of 

vaccines—ranging from live attenuated and subunit formulations to vector-based 

platforms—though challenges in cost, production, and efficacy remain. Molecular 

diagnostics (PCR, qPCR, NGS) are increasingly valuable for species-level identification 

and epidemiological monitoring. Ultimately, an integrated control strategy that combines 

advanced diagnostics, effective vaccination, and novel therapeutics is essential for 

mitigating the burden of coccidiosis and ensuring sustainable poultry production. This 

review also identifies critical knowledge gaps and research priorities needed to develop 

innovative solutions for long-term control. 
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Introduction 

Poultry term refers to a diverse group of 

domesticated bird species, including 

chickens, turkeys, ducks, geese, guinea 

fowls, and ostriches, which are primarily 

raised for the production of meat and 

eggs for human consumption. Among 

these, chickens are the most widely 

reared and economically significant 

species, owing to their adaptability to a 

broad range of environmental conditions 

across the globe. As a major source of 

high-quality animal protein, poultry 

plays a critical role in enhancing human 

nutrition and food security. In 

developing countries, poultry production 

represents a vital component of both 

agricultural systems and rural 

livelihoods, serving as an accessible and 

sustainable means of income generation 

and poverty reduction, particularly for 

landless and resource-poor households 

(Chauhan, 1996; Guèye , 1998). 

Poultry production, particularly in 

rural areas such as those in Iran, faces 

numerous challenges that significantly 

constrain its growth and productivity. 

Among the most critical of these are 

diseases, malnutrition, predation, 

inadequate housing, and poor 

management practices. Infectious 

diseases such as Newcastle disease, 

salmonellosis, chronic respiratory 

disease, and nutritional deficiencies 

contribute to high mortality rates, with 

losses ranging from 20–50%, and in 

severe outbreaks, reaching as high as 

80%. These health constraints not only 

impair bird welfare and performance but 

also result in substantial economic 

losses, particularly in low-input 

production systems. The situation is 

further exacerbated in intensive farming 

systems, where overcrowding and stress 

elevate disease prevalence and severity. 

In this context, the persistence of disease 

represents a major bottleneck to 

improving poultry productivity and 

threatens both local food security and the 

broader stability of the global food 

supply chain  (Ahmad et al., 2022; 

Aganovic et al., 2021; Williams, 1998; 

Waldenstedt, 2004; Sørensen et al., 

2006). 

Among the various diseases affecting 

poultry, coccidiosis stands out as a 

particularly insidious challenge due to 

its widespread prevalence, economic 

impact, and subclinical complexity. 

Caused by protozoan parasites of the 

genus Eimeria, coccidiosis leads to 

intestinal damage, poor feed efficiency, 

and impaired growth, especially in 

young birds. Although clinical cases can 

result in significant mortality, the true 

burden of the disease lies in its 

subclinical form, which often goes 

undiagnosed yet substantially reduces 

productivity. Estimates suggest that 

nearly 70% of the economic impact of 

coccidiosis is attributable to its 

subclinical effects undermining weight 

gain and feed conversion rates  (Conway 

and McKenzie, 2007; Morris and 

Gasser, 2006; Hoerr, 2010; Haug et al., 

2008; Etuk et al., 2004). Despite its 

global presence, diagnosis, management 

and control of subclinical coccidiosis 

remain insufficiently understood or 

implemented. This data gap underscores 

the need for a comprehensive 

investigation of poultry coccidiosis. 
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Therefore, the present review aims to 

synthesize current knowledge on its 

epidemiology, economic implications, 

diagnostic challenges, and control 

strategies, highlighting its role as a key 

limiting factor in sustainable poultry 

production. This study is conducted 

specifically on chickens as a 

representative and economically 

significant sector of the broader poultry 

industry. 

 

Etiology 

As mentioned, coccidiosis is caused by 

intracellular protozoan parasites of the 

genus Eimeria, within the phylum 

Apicomplexa and class Coccidia. These 

parasites infect specific regions of the 

intestinal tract in chickens, leading to 

variable clinical outcomes ranging from 

mild subclinical infections (coccidiasis) 

to severe clinical disease with high 

mortality. Pathogenesis is largely driven 

by the destruction of epithelial cells 

during the asexual (schizogony) and 

sexual reproductive stages of the 

parasite’s life cycle. The damage caused 

includes intestinal hemorrhage, 

inflammation, impaired digestion, and 

malabsorption, all of which contribute to 

reduced growth performance and feed 

efficiency  (Foreyt, 2013; Clark and 

Blake, 2012; Williams, 2002; Haug et 

al., 2008; Khazandi, 2006; Madlala  et 

al., 2021). 

Seven species of Eimeria are 

classically recognized in chickens, each 

with distinct biological, pathological, 

and morphological traits. In addition, 

three cryptic Operational Taxonomic 

Units (OTUs)—E. lata, E. nagambie, 

and E. zaria—have recently been 

identified and proposed as new species 

based on molecular and phenotypic 

evidence. These cryptic species are 

increasingly associated with persistent, 

subclinical infections and reduced farm 

profitability in developing poultry 

industries, particularly in Africa and 

Asia  (Jenkins et al., 2025; Blake  et al., 

2021; Mathis et al., 2024; Tirfie and 

Lulie, 2024; Clark et al., 2016; Jatau et 

al., 2016; Nabian et al., 2018). The table 

below provides a structured overview of 

these species, including their oocyst 

morphology, primary site of infection 

and pathogenicity (Table 1). 

 

Life cycle 

As mentioned, coccidiosis in chickens is 

caused by ingestion of sporulated 

oocysts, which represent the infective 

stage of Eimeria spp. (Fig.1). The 

transmission occurs via the fecal-oral 

route, primarily through contaminated 

feed, water, or litter. Upon ingestion, the 

oocysts pass through the upper 

gastrointestinal tract and are exposed to 

digestive enzymes and mechanical 

forces within the gizzard. This leads to 

excystation, where each oocyst releases 

sporozoites (the motile invasive form)  

(Nabian et al., 2018; McMullin, 2020). 

Once released, the sporozoites invade 

intestinal epithelial cells, initiating the 

asexual reproduction phase (schizogony 

or merogony). During this stage, the 

parasites undergo two to four rounds of 

replication, depending on the species, 

producing large numbers of merozoites. 

These merozoites burst the host cells and 

infect new epithelial cells, amplifying 

tissue damage  (Kaufmann, J., 2013). 

Following asexual replication, the life 

cycle transitions into the sexual phase 

(gametogony).
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Table 1: Oocyst morphology, primary site of infection and pathogenicity of Eimera species which 

infect chickens. 

Eimeria 

Species 

Oocyst Size 

(μm) 

Site of 

Infection 
Severity 

Asexual 

Generations 
Signs 

Eimeria 

tenella 
19.5 × 16.5 Caeca High 2 

Causes bloody 

diarrhea; highly 

pathogenic 
      

Eimeria 

acervulina 
18.0 × 14.0 

Upper 

intestine 

Mild to 

moderate 
3 

Most prevalent; 

causes white plaque 

lesions 
      

Eimeria 

maxima 
30.5 × 20.7 Mid intestine Moderate 2 

Largest oocyst; major 

cause of reduced 

weight gain 
      

Eimeria 

necatrix 
20.0 × 17.0 Mid intestine High 4 

Severe hemorrhagic 

enteritis; resembles E. 

tenella 
      

Eimeria 

brunetti 
26.0 × 18.0 

Lower 

intestine 
Moderate 2 

Less common; 

inflammation of the 

rectum and cloaca 
      

Eimeria mitis 15.6 × 14.2 
Lower 

intestine 
Mild 2 

Least pathogenic; 

often subclinical 
      

Eimeria 

praecox 
18.0 × 15.0 

Upper 

intestine 
Mild 2 

Rarely causes disease; 

very mild 
      

Eimeria lata 

(OTU-X) 
30.8 × 23.8 

Intestinal 

tract 
Subclinical Unknown 

Emerging; widespread 

in Africa and Asia 

      

Eimeria 

nagambie 

(OTU-Y) 

26.7 × 22.8 
Intestinal 

tract 
Subclinical Unknown 

Detected in Nigeria; 

part of cryptic 

Eimeria group 
      

Eimeria zaria 

(OTU-Z) 
17.7 × 15.2 

Intestinal 

tract 
Subclinical Unknown 

Associated with 

productivity losses in 

Sub-Saharan Africa 

 

 
Figure 1: Chicken Eimeria spp. infection rates align with reports from Iran, Nigeria and India. 
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Merozoites differentiate into male 

(microgametes) and female 

(macrogametes) gametocytes. 

Fertilization occurs in the intestinal 

lining, forming a zygote that develops 

into an oocyst, which is excreted in the 

feces  (McMullin, 2020; Kaufmann, 

2013). 

Outside the host, in the presence of 

favorable environmental conditions 

(oxygen, warmth, and moisture), the 

oocyst undergoes sporulation, 

completing the cycle. This typically 

occurs within 1–2 days. A single 

ingested oocyst can result in the 

production of hundreds of thousands to 

millions of new oocysts, contributing to 

rapid environmental contamination and 

re-infection  (Fanatico, 2006; Trees et 

al., 2001). 

 

Epidemiology of chicken coccidiosis 

Coccidiosis is frequently encountered in 

intensively managed poultry operations, 

particularly where suboptimal hygiene 

and biosecurity measures prevail. 

Environmental conditions are central to 

the transmission dynamics of the 

disease, as the sporulation and 

subsequent infectivity of Eimeria 

oocysts depend heavily on temperature, 

moisture, and oxygen availability. Damp 

litter with a moisture content above 30% 

and ambient temperatures ranging from 

25 to 30 °C provide ideal conditions for 

oocyst sporulation within 24 to 48 hours. 

In contrast, sporulation is delayed or 

inhibited entirely under dry conditions at 

10 °C, while high temperatures between 

45–50 °C can accelerate sporulation to 

less than a day. However, oocysts are 

heat-labile and can be destroyed by 

exposure to 56 °C for one hour. 

Outbreaks often follow the sudden 

ingestion of large quantities of 

sporulated oocysts by immunologically 

naïve birds, particularly those between 3 

and 8 weeks of age, reflecting the 

interplay between environmental 

contamination and host susceptibility 

(Etuk et al., 2004; Trees et al., 2001; 

Musa et al., 2010; De Gussem, 2007; 

Abebe  and Gugsa, 2018; Sun et al., 

2009; Lee et al., 2010; Khan et al., 2002; 

Al-Natour et al., 2002). 

 

Host susceptibility and disease 

progression 

Chickens of all ages are susceptible to 

Eimeria infections, but clinical disease is 

more frequently observed in young 

birds, particularly within the first 3–18 

weeks of life. Following ingestion, 

clinical signs of intestinal coccidiosis 

may appear as early as 3 days post-

infection, with typical incubation 

periods of 5 days for intestinal and 5–6 

days for cecal forms. Infected birds may 

show varying severity of disease 

depending on the infecting Eimeria 

species and oocyst load. Co-infection 

with multiple Eimeria species is 

common and can lead to compounded 

pathological effects (Abebe and Gugsa, 

2018; Poulsen et al., 2000; Singh et al., 

2012). 

 

Species-specific localization in the 

intestine 

Each Eimeria species exhibits a 

predilection for specific regions of the 

gastrointestinal tract in chickens. For 
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instance, Eimeria acervulina primarily 

invades the duodenum, while E. maxima 

and E. mitis target the midsection of the 

small intestine. In contrast, more 

pathogenic species such as E. tenella, E. 

necatrix, and E. brunetti colonize the 

caeca, rectum, and distal segments of the 

small intestine, where they induce more 

severe lesions. The resulting tissue 

damage varies in intensity depending on 

the species involved, influencing the 

overall clinical outcome and mortality 

rate (Etuk et al., 2004). 

 

Risk factors and environmental 

influences 

Multiple risk factors contribute to the 

occurrence and severity of coccidiosis 

outbreaks. These include poor litter 

management, such as moisture content 

exceeding 30%, leaking water lines, and 

failure to remove contaminated litter. 

The absence of an all-in-all-out system, 

improper use or suboptimal inclusion of 

anticoccidials in feed, concurrent 

infections, dietary changes, and other 

environmental or management-related 

stressors also predispose flocks to 

outbreaks. Furthermore, immune 

suppression and the overuse of 

coccidiostats can promote resistance and 

increase susceptibility. The persistence 

of sporulated oocysts in the 

environment, combined with favorable 

climatic conditions and intensive rearing 

practices, sustains endemicity and 

facilitates disease transmission. In rural 

or backyard poultry systems, mixed 

parasitic infections (including mites, 

lice, helminths, and Eimeria spp.) are 

commonly reported, complicating 

disease control and further influencing 

the epidemiology of avian coccidiosis 

(Poulsen et al., 2000; Singh et al., 2012; 

Chanie  et al., 2009; Singla  et al., 2007; 

Pattison et al., 2007). 

 

Prevalence of coccidiosis in poultry 

production systems 

The prevalence of Eimeria infections in 

poultry has been extensively 

documented across diverse production 

systems and geographic regions. 

Various studies have reported Eimeria 

infections in commercial and backyard 

flocks worldwide, with regional 

variations influenced by climatic 

conditions, breed susceptibility, and 

management practices. In South Africa, 

Malatji et al. reported a prevalence of 

29.46% among local chickens in 

Limpopo and KwaZulu-Natal. 

Similarly, Muazu et al. observed a 

52.9% prevalence across all 36 Nigerian 

states and the federal capital. Reports 

from Asia and the Middle East have 

indicated an even higher infection rate, 

with prevalence estimates exceeding 

50% in countries such as India, Pakistan, 

Jordan, and Iran. Mortality rates 

associated with Eimeria infections vary 

significantly, reaching 92% in Romania, 

88.4% in Argentina, 78% in Jordan, 

71.9% in Pakistan, and 70.9% in 

Ethiopia, illustrating the potential for 

severe losses in affected flocks  (Sultana 

et al., 2023; Györke et al., 2016; 

Gharekhani  et al., 2014; Mohammed 

and Sunday, 2015; Malatji et al., 2016; 

Muazu et al., 2008; Karaer et al., 2012; 

Sharma et al., 2013; Oljira  et al., 2012; 

Ali  et al., 2004). 
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Climatic and seasonal influence on 

prevalence 

Environmental factors, especially 

climate and seasonal variations, are 

strongly associated with the 

epidemiology of coccidiosis. Warm, 

humid conditions characteristic of the 

rainy season create an ideal environment 

for oocyst sporulation and survival. 

Multiple studies report peak infection 

rates during or shortly after rainy periods 

in tropical and subtropical regions. For 

instance, Eimeria infections in Egypt 

peak during the winter months 

(December to February), which coincide 

with the rainy season, while in Ethiopia 

and the Kashmir Valley, incidence rises 

after the October rains and between 

September to November, respectively. 

This seasonal trend supports the 

association between moisture levels and 

oocyst development, particularly under 

open-house or backyard systems, where 

litter moisture can rise above 60%, 

facilitating sporulation. Under optimal 

conditions (25–30°C and 75% 

humidity), sporulated oocysts may 

remain viable in the environment for 

over 600 days  (Abebe and Gugsa, 2018; 

, Oljira et al., 2012; Gari et al., 2008; 

Lawal et al., 2016; Attree et al., 2021; 

Ahmed et al., 2018). 

 

Breed and production system-specific 

prevalence 

Variation in the prevalence of 

coccidiosis is closely associated with 

poultry breed and production systems. 

Exotic breeds generally exhibit higher 

susceptibility compared to indigenous or 

scavenging village chickens, likely due 

to differences in genetic resistance and 

increased exposure to infective oocyst 

loads in confined housing environments. 

Lawal et al. reported the absence of 

infection in village chickens maintained 

under scavenging systems, in contrast to 

significantly higher infection rates in 

exotic breeds. Among commercial 

poultry, broilers showed the highest 

infection prevalence (68.7%), followed 

by pullets (55.3%) and layers (3.3%), a 

trend that may be attributed to 

differences in stocking density, housing 

systems, and overall management 

intensity (Table 2). These findings are 

consistent with previous reports from 

Nigeria, Iran, and India. While 

prevalence values may vary across 

countries due to differences in 

husbandry practices, environmental 

conditions, and biosecurity levels, the 

reported figures provide a representative 

estimate that is expected to be broadly 

reflective of global trends under 

comparable rearing systems  (Lawal et 

al., 2016; Nematollahi et al., 2009; 

Nnadi and George, 2010; Jatau et al., 

2012; Naphade, 2013; Bachaya et al., 

2012; Dakpogan et al., 2013; Adhikari et 

al., 2008; Iqbal and Begum, 2010). 

 

Global prevalence patterns 

Synthesizing the available data reveals a 

global pooled prevalence of 44.3%, with 

Eimeria tenella being the most 

frequently isolated species (38.7%), and 

the most pathogenic, often causing 

hemorrhagic lesions and high mortality. 

The consistently high prevalence across 

studies highlights the endemic nature of 

coccidiosis in both intensive and 

extensive poultry systems. 
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Table 2: Molecular diagnostic techniques for Eimeria species in poultry. 

Technique Principle Advantages Limitations 
Applications in 

Eimeria Diagnosis 

PCR (ITS-1 & 

ITS-2) 

Amplifies 

species-specific 

ITS regions of 

rDNA using 

designed primers 

High specificity; 

differentiates all 

7 chicken 

Eimeria spp.; 

small DNA 

quantity needed 

Requires 

thermocycler; 

lab-based 

Routine species 

identification; 

molecular 

epidemiology 

     

RAPD 

Uses short, 

arbitrary primers 

to amplify 

random genomic 

segments 

Simple; no prior 

sequence 

information 

needed 

Low 

reproducibility; 

less specific 

Initial genetic 

fingerprinting; 

development of 

SCAR markers 

     

SCAR markers 

Uses longer, 

specific primers 

derived from 

RAPD fragments 

High specificity 

and 

reproducibility 

Requires prior 

RAPD data 

Confirmatory 

species 

identification; 

multiplex PCR 

assays 
     

qPCR 

Amplifies and 

quantifies target 

DNA in real-time 

using fluorescent 

dyes/probes 

Quantitative; 

sensitive; fast 

Requires 

specialized 

equipment; 

higher cost 

Quantifying 

parasite load; 

monitoring 

infection dynamics 

     

Multiplex PCR 

Simultaneous 

amplification of 

multiple target 

sequences in one 

reaction 

Detects several 

species at once; 

cost- and time-

efficient 

Primer design 

complexity; 

potential cross-

reactivity 

Simultaneous 

detection of all 

chicken Eimeria 

spp. 

     

LAMP 

Isothermal DNA 

amplification 

with loop primers 

Rapid (<1 hr); no 

thermocycler 

needed; field-

applicable 

Primer design is 

complex; limited 

multiplexing 

Point-of-care 

detection; field 

surveillance 

     

NGS 

Massively 

parallel 

sequencing of 

whole genomes 

or targeted 

regions 

Detects 

cryptic/novel 

species; high-

resolution 

phylogeny 

High cost; 

requires 

bioinformatics 

Discovery of 

variants (E. lata, E. 

nagambie, E. 

zaria); genomic 

epidemiology 

 

Although commercial operations often 

implement prophylactic anticoccidial 

regimens, the persistence of the parasite 

reflects challenges in achieving full 

control. 

Interestingly, contrary to expectation, 

several studies reported higher 

coccidiosis prevalence in backyard 

flocks (e.g., 25% in Nepal and 36% in 

Bangladesh), potentially due to 

environmental exposure, lack of 

medication, and poor biosecurity. 

However, lower prevalence in 

commercial layers and broilers in the 

same regions may reflect the benefits of 

routine prophylaxis through medicated 

feed and water. These findings 

underscore the complex interplay of 
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environmental, genetic, and 

managemental factors shaping the 

epidemiology of Eimeria infections in 

poultry globally  (Badri et al., 2024; 

Fossum et al., 2009; Macdonald et al., 

2017; Martynova-Van Kley et al., 2012; 

Zhou et al., 2020; Alwan  et al., 2025; 

Györke  et al., 2013; Fornace et al., 

2013).  

 

Economic impact of coccidiosis 

Coccidiosis imposes a substantial 

financial burden on the global poultry 

industry, with recent estimates placing 

total annual losses at approximately 

£10.36 billion—a significant increase 

from earlier global projections 

exceeding $2 billion. In the United 

States alone, losses have been estimated 

at $450 million per year, with an 

additional $100 million allocated to 

preventive and therapeutic measures. 

These rising figures reflect not only 

inflation and global poultry expansion 

but also the growing economic 

vulnerability of high-performance 

broiler lines to enteric diseases (Blake et 

al., 2021; Györke et al., 2016; Blake and 

Tomley, 2014; Kadykalo et al., 2018; 

Blake  et al., 2021; Bera et al., 2010; 

Kinung’hi et al., 2004; Maikai et al., 

2007; Owai and Gloria, 2010). 

Cost structures encompass reduced 

weight gain, impaired feed conversion, 

mortality, and expenses related to 

anticoccidial drug use and vaccination 

programs. Resistance to anticoccidial 

compounds has compounded these 

challenges, leading to diminished 

efficacy and higher input costs. Region-

specific studies reinforce these trends: 

per-bird economic losses in Ethiopia 

ranged between 0.53 and 0.55 Birr; in 

Romania, the average flock-level cost 

reached €3,162.40 in 2010. In Algeria, 

the 2022 cost of coccidiosis was £86.66 

million, with a per-bird cost of £0.30; 

nearly twice the global average 

estimated in 2016 (Kadykalo et al., 

2018; Kinung’hi et al., 2004; Blake et 

al., 2020; Dierick et al., 2019; Peek and 

Landman, 2011; Rushton et al., 2018; 

Williams, 1999). 

In Indonesia’s Central Java region, 

broiler production systems suffered over 

3 trillion rupiah in direct economic 

losses, including 2.5 trillion in 

production impacts and 500 billion in 

disease control efforts. Despite 

widespread use of coccidiostats, 

biosecurity measures, and vaccination, 

prevalence rates remain high; especially 

in broilers fed with commercial diets; 

pointing to limitations in current control 

strategies. The persistence of high 

infection levels, alongside growing 

concerns over drug resistance, highlights 

the need for reassessment of intervention 

approaches (Pawestri et al., 2020). 

 

Immune responses of chickens against 

Eimeria infection 

Innate immunity 

The innate immune system forms the 

first line of defense against Eimeria in 

chickens, comprising physical barriers, 

soluble immune molecules, and cellular 

components such as macrophages, 

dendritic cells, and natural killer cells. 

Infection induces structural changes in 

the intestinal epithelium, triggering 

recruitment and activation of immune 
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cells that detect pathogen-associated 

molecular patterns (PAMPs) through 

pattern recognition receptors (PRRs). 

PRRs including TLR1LA, TLR4, TLR5, 

TLR7, and TLR21, along with cytokines 

such as IFN-α, IFN-β, IFN-γ, IL-1β, IL-

12, and IL-22, are upregulated following 

exposure to E. tenella sporozoites or in 

infected tissues, indicating TLR-

mediated recognition pathways. 

Although the role of profilin recognition 

by PRRs in Eimeria remains unclear, 

evidence supports the involvement of 

macrophages, dendritic cells, and 

intraepithelial lymphocytes in initiating 

immune responses. However, the precise 

mechanisms by which innate immunity 

presents Eimeria antigens to elicit 

adaptive responses remain insufficiently 

understood (Wang  et al., 2022; Ivanova 

et al., 2019; Sumners et al., 2011; Zhou 

et al., 2013). 

 

Adaptive immunity 

Adaptive immunity is critical for long-

term protection against Eimeria, relying 

on antigen-specific T and B lymphocyte 

activation. CD4⁺ helper T cells and 

CD8⁺ cytotoxic T cells mediate cellular 

responses, while B cells produce 

antibodies targeting Eimeria antigens, 

potentially contributing to cross-

presentation and enhanced protection. 

Although the exact role of humoral 

immunity is unresolved, antigen-specific 

memory is a hallmark of protection, 

forming the basis for vaccination 

strategies. In immunized chickens, 

sporozoites are often located within or 

near memory γδ and αβ CD8⁺ T cells, 

with αβ T cells playing a central role in 

recall responses. Tissue-resident 

memory cells, localized in the gut, 

rapidly proliferate upon reinfection, 

restricting parasite development at early 

schizont stages. Experimental transfer of 

small numbers of CD8⁺ TRM cells 

provides protection comparable to larger 

quantities of gut-associated CD8⁺ T 

cells, underscoring their potency. These 

findings have significant implications 

for the design of live oocyst-based 

vaccines. Additionally, T stem cell 

memory (TSCM) cells (known for their 

longevity and self-renewal) represent a 

promising but underexplored avenue in 

Eimeria vaccine development  (Lee et 

al., 2009; Qin et al., 2016; Kamenjarin 

et al., 2023; Milner et al., 2020; Shi et 

al., 2023; Pogonka et al., 2010; Ferreira 

et al., 2020). 

 

Diagnosis and control strategies for 

avian coccidiosis 

Diagnostic approaches 

Accurate identification of Eimeria 

species is essential for the effective 

diagnosis and control of coccidiosis, 

particularly in commercial poultry 

production where economic losses can 

be substantial. Traditionally, diagnosis 

has relied on a combination of clinical 

signs, gross pathological findings at 

necropsy, and microscopic evaluation of 

oocysts. Classical methods include 

macroscopic observation of lesion 

location and severity, along with 

microscopic assessment of oocyst size 

and shape, and, in some cases, 

examination of other developmental 

stages. Clinical signs in affected birds 

typically include ruffled feathers, 
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depression or drowsiness, reduced feed 

and water intake, and watery, whitish, or 

bloody feces. These signs often progress 

to dehydration, impaired weight gain, 

and, if untreated, mortality. 

Histopathologically, Eimeria spp. 

invade the intestinal mucosa, where 

meronts, gamonts (the developmental 

stage that produces gametes), and 

oocysts cause marked epithelial 

alterations, including cell distortion, 

rupture, separation from adjacent cells, 

and sloughing, accompanied by 

inflammation. Such mucosal damage 

also reduces brush border enzyme 

activity, leading to malabsorption and 

further compromising growth 

performance. In cases where greater 

diagnostic precision is required (Ali et 

al., 2004; Carvalho et al., 2011; 

McDougald et al., 2017; Barrios et al., 

2017; Hauck et al., 2019; Hinsu et al., 

2018; Yun et al., 2000; Greenacre and 

Morishita, 2021; Adams et al., 1996). 

Gross lesion scoring is a common 

method for assessing the severity of 

infection. Lesions are scored on a 

standardized scale from 0 to 4, 

depending on the Eimeria species 

involved. This scoring system is often 

complemented by quantitative oocyst 

counts using the McMaster technique or 

droppings analysis. More recently, the 

Mini-FLOTAC method has emerged as 

a rapid and efficient tool for processing 

large sample volumes both in laboratory 

and field settings, based on flotation 

principles  (Johnson and Reid, 1970; 

Price, 2012; Bortoluzzi et al., 2018). 

Molecular diagnostic techniques 

provide enhanced specificity and 

sensitivity for Eimeria species 

identification. Among these, PCR 

targeting the internal transcribed spacer 

regions (ITS-1 and ITS-2) of ribosomal 

DNA is widely employed. The ITS 

sequences—non-coding regions located 

between structural rRNA genes—

exhibit high interspecific variability, 

enabling differentiation among all seven 

recognized Eimeria species in chickens 

(E. acervulina, E. brunetti, E. maxima, 

E. mitis, E. necatrix, E. praecox, and E. 

tenella). Random Amplified 

Polymorphic DNA (RAPD) uses short, 

arbitrary primers to generate species-

specific DNA fingerprints, which have 

been adapted to produce Sequence 

Characterized Amplified Region 

(SCAR) markers—longer, specific 

primers that reliably amplify defined 

target sequences for species 

confirmation. Quantitative PCR (qPCR) 

incorporates fluorescent dyes or probes 

to quantify parasite DNA in real time, 

while multiplex PCR combines multiple 

primer sets in a single reaction to 

simultaneously detect several Eimeria 

species. Loop-Mediated Isothermal 

Amplification (LAMP) is a rapid, field-

friendly method that amplifies DNA at a 

constant temperature using specially 

designed primers, eliminating the need 

for thermocyclers. With the advent of 

Next-Generation Sequencing (NGS), 

whole-genome and targeted sequencing 

approaches allow the detection of 

cryptic, emerging, or region-specific 

variants (such as E. lata, E. nagambie, 

and E. zaria) and support broader 

epidemiological and phylogenetic 

studies (Fornace et al., 2013; Haug et al., 
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2007; Vrba et al., 2010; Barkway et al., 

2011; Moraes et al., 2015; Hamidinejat 

et al., 2010; You, 2014; Shirley and 

Bumstead, 1994; Fernandez et al., 

2004). In Table 2, different molecular 

diagnostic techniques are summarized 

and compared. 

 

Anticoccidial drugs 

The control of coccidiosis in poultry has 

historically relied on the prophylactic 

use of anticoccidial drugs, a practice 

initiated in 1948 with the introduction of 

sulfaquinoxaline. Since then, numerous 

compounds have been developed and 

incorporated into poultry health 

management programs. Anticoccidials 

are broadly classified into two main 

categories: synthetic compounds and 

ionophores. 

Synthetic compounds comprise 

chemically diverse agents such as 

quinolones, pyridones, alkaloids, 

thiamine analogues, and triazine 

derivatives. Their modes of action target 

critical parasite metabolic processes, 

including inhibition of mitochondrial 

respiration, disruption of the folic acid 

pathway, and competitive inhibition of 

thiamine uptake. Although the 

development of novel synthetic agents 

has been limited in recent years, 

ethanamizuril (a new triazine derivative) 

has been approved for use in China, 

demonstrating ongoing innovation in 

this field  (Kadykalo et al., 2018, 

Chapman and Rathinam, 2022; Fu et al., 

2021).  

Ionophores, or polyether antibiotics, 

are fermentation products of 

microorganisms such as Streptomyces 

spp. and Actinomadura spp. They are 

classified into monovalent ionophores 

(e.g., salinomycin, monensin, narasin), 

monovalent glycosidic ionophores (e.g., 

maduramicin, semduramycin), and 

divalent ionophores (e.g., lasalocid). 

Ionophores are valued for their broad 

activity against Eimeria spp., 

effectiveness against both asexual and 

sexual stages, and relatively slow 

development of resistance. By partially 

inhibiting parasite development 

(through disruption of ion transport 

(Na⁺, K⁺) in sporozoites and early 

trophozoites) ionophores allow the host 

to develop protective immunity while 

controlling clinical disease  (Peek and 

Landman, 2011; Chapman and 

Rathinam, 2022; Noack et al., 2019; 

Antoszczak et al., 2019). 

 

Anticoccidial drug resistance 

The extensive and sustained 

administration of anticoccidial agents in 

poultry production has precipitated a 

pervasive rise in drug resistance among 

Eimeria species. While Eimeria tenella 

remains the principal focus of resistance 

studies, increasing evidence highlights 

the emergence of resistant strains in 

Eimeria acervulina as well as other 

species frequently encountered in mixed 

infections under natural conditions. To 

investigate and obtain resistant Eimeria 

isolates, researchers have employed 

several methodologies. One approach 

involves the direct recovery of drug-

resistant parasites from field samples, 

reflecting naturally evolved resistance. 

Another strategy utilizes stepwise 

exposure to incrementally higher drug 
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dosages to select for resistant 

phenotypes under controlled laboratory 

conditions. More recently, innovative 

protocols have been developed that 

replicate the natural selection process by 

subjecting drug-sensitive Eimeria 

strains to medicated hosts, enabling the 

expedited generation of resistant 

populations within a reduced timespan  

(Sun et al., 2023). 

The initial body of research 

predominantly emphasized 

epidemiological characterization of 

resistance patterns. Subsequently, focus 

shifted toward deciphering the 

molecular and biochemical 

underpinnings of resistance. Early 

investigations revealed that certain 

anticoccidial compounds, including 

decoquinate and clopidol, target 

mitochondrial electron transport in 

unsporulated oocysts, implicating 

mitochondrial pathways in drug action 

and resistance. With the advent of 

advanced molecular technologies, 

proteomic analyses have facilitated the 

identification of protein biomarkers that 

correlate strongly with resistant 

phenotypes, offering valuable tools for 

resistance detection and mechanistic 

study. Moreover, transcriptomic 

profiling via RNA sequencing has 

allowed for a comprehensive 

comparison of gene expression between 

drug-susceptible and drug-resistant 

strains, uncovering critical genetic 

alterations associated with resistance. 

Collectively, these multidisciplinary 

studies indicate that resistance arises 

through multiple mechanisms, chiefly 

involving modifications of drug target 

sites, diminished intracellular drug 

accumulation—potentially due to 

altered transport or sequestration—and 

disruption of drug activation or 

metabolic inactivation processes within 

the parasite. This enhanced 

understanding at the molecular level is 

instrumental in guiding the development 

of novel anticoccidial interventions 

designed to circumvent existing 

resistance challenges  (Chapman 1997; 

Thabet et al., 2017; Xie et al.,  2020). 

 

Natural alternatives for coccidiosis 

control 

Amid rising concerns over drug 

resistance and food safety, attention has 

shifted toward natural and sustainable 

alternatives for the control of avian 

coccidiosis. These include phytogenic 

compounds, prebiotics, probiotics, and 

essential oils, which primarily exert their 

effects through immunomodulation and 

modulation of the gut microbiota. Some 

of these compounds are discussed in 

following literature. 

 

Probiotics, prebiotics, and 

phytochemicals 

Probiotics, key modulators of intestinal 

microbiota and immune function, have 

demonstrated significant potential in 

controlling avian coccidiosis. Studies 

highlight strains such as Lactobacillus 

plantarum, L. salivarius, and L. 

johnsonii, along with Saccharomyces 

cerevisiae, which enhance antioxidant 

defenses and strengthen gut barrier 

integrity, thereby increasing resistance 

to Eimeria infections. Prebiotics, which 

promote the growth of beneficial 
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microbes, synergize with probiotics to 

amplify these protective effects, notably 

reducing disease severity in E. tenella-

infected birds. Additionally, 

phytochemicals such as saponins and 

tannins contribute anti-inflammatory 

and antiparasitic activities by inhibiting 

parasite invasion and supporting 

epithelial repair. The combined 

application of probiotics, prebiotics, and 

phytochemicals represents a promising 

integrated approach to enhance poultry 

resilience against coccidiosis  (Mohsin  

et al., 2022; Awais et al., 2019; Zhang  

et al., 2019; Burt et al., 2013; Santos et 

al., 2022) 

 

Garlic (Allium sativum L.) 

Garlic is rich in bioactive sulfur 

compounds, including allicin and diallyl 

sulfides, with known antioxidant and 

immunomodulatory properties. These 

compounds disrupt cellular membranes 

and energy metabolism of pathogens, 

leading to decreased oocyst sporulation 

and parasite viability. Garlic extract has 

demonstrated in vivo and in vitro 

efficacy against Eimeria species through 

reduced oocyst shedding and enhanced 

immune response (Kim et al., 2013; 

Ahmad et al., 2023). 

 

Artemisia annua 

Artemisia annua and its active 

compound, artemisinin, have shown 

promising anticoccidial properties. 

Supplementation in poultry diets 

significantly reduces oocyst counts and 

intestinal lesion scores. Although some 

reduction in body weight gain has been 

noted, feed conversion efficiency and 

overall health indicators often improve. 

A. annua also positively influences gut 

microbiota and offers a multi-targeted 

approach to disease control  (Lang et al., 

2019; Coroian et al., 2022; de Almeida 

et al., 2012; Fatemi  et al., 2017). 

 

Bidens pilosa (B. pilosa) 

Inclusion of B. pilosa in poultry feed at 

concentrations of 0.025% or higher has 

been shown to reduce oocyst shedding, 

enhance growth performance, lower 

feed conversion ratios, and increase 

anticoccidial index. Its efficacy lies in 

reducing pathogen burden and 

supporting beneficial gut flora  (Chang 

et al., 2016). 

 

Oregano essential oil 

Oregano oil, particularly due to its high 

content of carvacrol and thymol (70–

80%), has demonstrated notable 

anticoccidial effects. Supplementation 

improves gut absorption, enhances 

antioxidative defenses, and reduces 

lesion severity without impairing 

growth. In both vaccinated and 

unvaccinated birds, oregano oil reduced 

infection severity and oocyst output, 

indicating its potential as both a 

preventive and therapeutic agent  

(Abdelli  et al., 2021; Tsinas et al., 2011; 

Mohiti-Asli and Ghanaatparast-Rashti, 

2015). 

 

Anticoccidial vaccines 

With increasing drug resistance in 

Eimeria and concerns over residues in 

animal products, anticoccidial vaccines 

have become essential tools for 

coccidiosis control. Current commercial 
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options include virulent strain-based, 

attenuated, transmission-blocking 

subunit vaccines, and newer genetic or 

vector-based approaches  (Attree et al., 

2021; Soutter et al., 2020). 

 

Virulent strain-based vaccines 

These contain defined mixtures of wild-

type Eimeria strains (e.g., Immucox®, 

Coccivac®) and provide strong 

protection, but improper use can cause 

clinical coccidiosis, necrotic enteritis, 

and mortality (Soutter et al., 2020; 

Zaheer et al., 2022). 

 

Attenuated vaccines 

Precociously selected or embryo-

adapted Eimeria strains retain 

immunogenicity with reduced 

pathogenicity (e.g., Paracox®, Neca™, 

SCOCVAC®, Livacox®). Limitations 

include lower fecundity, higher 

production costs, and risks of unstable 

attenuation or reversion  (Liu et al., 

2023; Chapman, 2014). 

 

Transmission-blocking subunit vaccine 

CoxAbic® contains affinity-purified E. 

maxima gametocyte antigens, used to 

immunize hens and confer maternal 

antibody protection to chicks. 

Production is costly, time-consuming, 

and labor-intensive due to reliance on 

native antigen purification  (Sharman et 

al., 2010; Chen et al., 2021). 

 

Precocious line-based gene knockout 

vaccines 

CRISPR/Cas9 enables targeted deletion 

of virulence or developmental genes in 

precocious lines, enhancing vaccine 

safety. Progress depends on identifying 

key developmental regulators in Eimeria  

(Tang et al., 2020; Cheng et al., 2021; 

Clark et al., 2008). 

 

Vector-vaccines 

Live vectors (e.g., probiotics, yeast, 

attenuated Salmonella, fowl pox virus, 

adenovirus, transgenic Eimeria) can 

deliver Eimeria antigens via natural 

infection routes, enhancing protective 

immunity. Strategies include 

incorporating molecular adjuvants (IL-2, 

Fc, profilin) or expressing antigens from 

multiple Eimeria species in a single 

strain (Xu et al., 2022; Baron  et al., 

2018; Konjufca et al., 2008; Li et al., 

2015; Pastor-Fernández et al., 2018; 

Tang et al., 2018). 

 

Other vaccines 

Structural vaccinology and nanoparticle-

based platforms offer precision antigen 

delivery, stability, and enhanced 

immune responses. Dendritic cell-

targeting vaccines aim to efficiently 

present antigens to T cells, potentially 

improving protection (Impagliazzo et 

al., 2015; Zhou et al., 2018; Yassine et 

al., 2015; McLellan et al., 2013). 

 

Conclusion 

Coccidiosis remains one of the most 

persistent and economically damaging 

diseases in poultry production, its impact 

intensified by the emergence of drug 

resistance and the limitations of current 

vaccines. Historically reliant on 

chemical control, the industry now faces 

mounting pressures related to food 

safety, sustainability, and animal 
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welfare, prompting a shift toward 

integrated and innovative solutions. 

Advances in molecular biology, 

immunology, and microbiome science—

ranging from CRISPR/Cas genome 

editing and multiomics profiling to 

precision immunology—are 

revolutionizing our understanding of 

Eimeria biology and enabling the design 

of highly specific, durable, and safe 

control tools. The future landscape 

includes multi-antigen, molecularly 

optimized vaccines, structural 

vaccinology-guided formulations, and 

genetically attenuated strains capable of 

inducing long-lasting protection. In the 

authors’ perspective, the path forward 

lies in uniting these molecular 

innovations with phytogenic 

compounds, probiotics, and other natural 

interventions, tailored to local 

epidemiology and production systems. 

Such a cross-disciplinary, field-validated 

approach holds the greatest promise for 

transitioning from reactive management 

to proactive, precision control, 

ultimately reshaping the global strategy 

for sustainable coccidiosis prevention. 
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